
RedBean ORM for PHP

RedBean ORM for PHP......................................................................... 1
The Idea ............................................................................................. 2

Getting Started .................................................................................. 2
Beans.................................................................................................. 3

Rules for properties ............................................................................ 3
Store a Bean in the database ............................................................... 3
Loading a Bean .................................................................................. 3
Updating a Bean................................................................................. 3
Deleting a Bean.................................................................................. 4
Importing and Exporting...................................................................... 4

Associations........................................................................................ 4
Creating the Association Manager ......................................................... 4
Connecting two Beans......................................................................... 4
Getting Related Beans......................................................................... 4
Breaking the connection between Beans ................................................ 5
1 to N relations .................................................................................. 5



Trees ................................................................................................ 5
Toolbox............................................................................................... 5

The Adapter....................................................................................... 5
The Query Writer................................................................................ 6
RedBean OODB .................................................................................. 6

Finding Beans ..................................................................................... 6
Selecting Beans from the database ....................................................... 6

RedBean Observers............................................................................. 6
Queries ............................................................................................... 7
Transactions ....................................................................................... 7
Meta Information................................................................................ 7

Fetching Meta Data............................................................................. 7
Changing or Adding Meta Data ............................................................. 8

RedShoe.............................................................................................. 8
Download Redshoe ............................................................................. 8
Redshoe Usage .................................................................................. 8
Adding a database .............................................................................. 8
Listing databases................................................................................ 8
Deployment ....................................................................................... 9
Exporting .......................................................................................... 9
Distributing databases directly ............................................................. 9

The Idea

RedBean is a lightweight object relational mapping tool. The central concept of RedBean is
the bean. A Bean is a simple object that acts as a data container. RedBean has two modes
of operation: fluid and frozen. By default RedBean operates in fluid mode. This means that
you can just store a bean using RedBean and it will adapt the database schemas if needed.
If you are done developing you can freeze() RedBean and deploy to production
environments.This is the idea: In fluid mode (default), if you throw a bean at RedBean it
will store that bean for you, no matter what. That sounds easy doesnt it?

Getting Started

To start developing with RedBean, the easiest way is to use the kickstart method. A
Kickstarter helps you to get started quickly without any prior initialization.
$toolbox = RedBean_Setup::kickstartDev(
"mysql:host=localhost;dbname=oodb","root","" );
The KickstartDev is meant for the development phase. It accepts three arguments; a
database connection string (DSN), a username to access the database and finally a
password (may be an empty string like in the example). Make sure you catch the output
returned by this function; it consists of a very handy toolbox that you can use along the
way. First make sure you get an instance of the RedBean Core instance from the toolbox.
$redbean = $toolbox->getRedBean();
If you do not want RedBean to alter the database structure anymore; you can either use:
$redbean->freeze();
or another kickstart method:
$toolbox = RedBean_Setup::kickstartFrozen( $dsn, $user, $pass );



Beans

RedBean simulates an object oriented database. The goal of RedBean is pretty simple; you
give it an object and it stores the object for you. The objects you exchange with RedBean
are not models but just plain beans. A bean can have many properties that are all public. A
bean also has a type. To create a bean of a certain type you must ask RedBean to dispense
such a bean for you:
$post = $redbean->dispense("post");
Now we have a post bean and we can populate this bean with all kinds of properties.

Rules for properties

There are some limitations concerning properties. First, the __info property is reserved for
all meta information concerning the bean (like its type). Also the id property represents the
primary key. A property may contain only primitive values.

Store a Bean in the database

To store a bean in the database we simply fill it:
$post->title = "My First Post";
$post->created = time();
And then we hand it over to RedBean to store it for us:
$id = $redbean->store( $post );
Now the beauty of RedBean is that it will create a post table for us automatically on the fly,
as well as three columns (id, title and created) each with an appropriate column type and it
will store the record for us in a readable way. It will also return the insert id.

Loading a Bean

Retrieving a bean from the database is even simpler. For instance, if we want to load the
previously saved bean, we simply ask for it like this:
$post = $redbean->load("post",$id);
Now, we have got our (blog)post object back. There is not much to tell about this is there?
We simply ask for a post with id $id and we get what we ask for.

Updating a Bean

Another beautiful feature of RedBean is that it seamlessly updates the database structure if
needed; for instance if we decide to introduce a completely new property:
$post->rating = 5;
$redbean->store( $post );
RedBean just alters the table to make place for the new property by adding a column of the
correct type.
We may even change the value from a column to a different type; of course in objects we
do not really notice this, but RedBean will widen the column for us if we need more space:
$post->rating = "3 Stars";
$redbean->store( $post );



Deleting a Bean

To delete a bean from the database:
$redbean->trash( $post );

Importing and Exporting

RedBean has two service methods to facilitate ultra-fast bean loading. To import values
from an array (i.e. POST):
$mybean->import($_POST,"intro,body,id");
This does the same as:
$mybean->intro = $_POST["intro"];
$mybean->body = $_POST["body"];
$mybean->id = $_POST["id"];
To export a bean to an array for use in a View object:
$aDullArray = $mybean->export();

Associations

Beans can be related; for instance a book has pages; a post may have comments etc.
Associations can have qualities; they can form a tree structure or a circular structure. With
RedBean you are free to design your own associative structures; to give you an idea how
you can do this and to provide at least basic functionality RedBean ships with a very basic
AssociationManager that can handle default associations.

Creating the Association Manager

The goal of the association manager is to manage associated beans. In order to do so, it
needs a toolbox. To get an instance of the manager class use:
$a = new RedBean_AssociationManager( $toolbox );

Connecting two Beans

To create a connection between two beans, just associate them:
$a->associate($page, $user);
The $page and the $user are now associated. In RedBean you can associate anything with
anything. All required tables will be generated on the fly for you.

Getting Related Beans

To get all pages associated with $user, type:
$keys = $a->related($user, "page" );
This will return an array containing the primary keys of every page related to $user. You
can also get the page beans directly if you like. To accomplish this we need to use the batch
loader from the RedBean Core class.
$pages = ($redbean->batch("page", $a->related($user, "page" )));



Breaking the connection between Beans

To clear the association between $page and $user type:
$a->unassociate($page, $user);
To clear all related pages:
$a->clearRelations($user, "page");

1 to N relations

From the RedBean perspective this is no more than a clear-all followed by a new
relationship. To assign a page to a user use:
$a->set1toNAssoc($user, $page);
To re-assign to a different user we use:
$a->set1toNAssoc($user2, $page);
We can also assign multiple pages to the same user; but the second Bean can only have
one of the first bean.

Trees

First Create a Tree Manager and give him the toolbox.
$tree = new RedBean_TreeManager( $toolbox );
To attach a child bean to a parent bean say:
$tree->attach( $parent, $child );
To get all the children under a parent:
$pages = $tree->children( $parent );
To get the parent id of a child bean, simply access the property parent_id:
$child->parent_id

Toolbox

The toolbox class in RedBean acts as a resource locator; its main function is to provide tools
you often need. I could have stashed all functionality in one big object (oodb) but I want
this library to be clean and maintainable. So I have given each class its own piece of logic
and with that its own responsibility. A class in the RedBean realm has therefore only one
reason to change. For you this means that the Kickstarter (who likes to make your job
easier) returns a toolbox instead of a RedBean instance. Inside this toolbox you will find
three classes that make up the core of RedBean.

The Adapter

The adapter is the class that communicates with the database for RedBean. This adapter
makes it possible to execute queries to manipulate the database. To get an instance of this
adapter use:
$adapter = $toolbox->getDatabaseAdapter();
For more information on the adapter see chapter: Queries.



The Query Writer

The Query Writer is only used by some RedBean modules to write platform specific SQL. You
never have to use this in your own code but by providing the toolbox to other modules you
give them the opportunity to take advantage of this system.

RedBean OODB

Most of the time you will need to interact with the RedBean Core Class instance. This object
represents the object oriented database that RedBean as a whole tries to simulate. To pick
this tool out of the toolbox say:
$redbean = $toolbox->getRedBean();
But if you have read the previous chapters carefully you would already have seen this :)

Finding Beans

This is where most ORM layers simply get it wrong. An ORM tool is only useful if you are
doing object relational tasks. Searching a database has never been a strong feature of
objects; but SQL is simply made for the job. In many ORM tools you will find statements
like: $person->select("name")->where("age","20") or something like that. I found this a
pain to work with. Some tools even promote their own version of SQL. To me this sounds
incredibly stupid. Why should you use a system less powerful than the existing one? This is
the reason that RedBean simply uses SQL as its search API.

Selecting Beans from the database

To search for specific beans in your database; we use a two-step system. First we select the
IDs we want to fetch; then we let RedBean convert these to the appropriate beans. For
instance, if we are looking for all pages that contain the name John we write:
$keys = $adapter->getCol("SELECT id FROM page WHERE `name` LIKE '%John%'");
Okay now we have a list of primary key IDs from the database. We can do anything with
this list: chop it up for pagination; change the order etc. To convert them to beans we
simply use the batch loader from the RedBean Core Class:
$pages = $redbean->batch("page", $keys);

RedBean Observers

RedBean supports observers to make it easy to add additional functionality without having
to alter any class. To attach a listener to an object:
$redbean->addEventListener( $event, $myListener );
The following events are supported by the RedBean Core Class: "open" (load), "update"
(store), "delete" (trash). The DBAdapter supports the event called "sql_exec". All
observables will call the onEvent() method defined in the observer interface.



Queries

To perform a query, get a database adapter and :
$database->exec( "update page set title='test' where id=1" );
To fetch a multidimensional resultset directly after firing the query:
$database->get( "select * from page" );
To fetch a single row:
$database->getRow("select * from page limit 1");
To fetch a single column:
$database->getCol("select title from page");
To fetch a single cell:
$database->getCell("select title from page limit 1");
To get the latest insert-id:
$database->getInsertID();
To get the number of rows affected:
$database->getAffectedRows();
To escape a value or columname for use in custom SQL use:
$database->escape( $value );
To get the original result resource to do your own processing:
$database->getRaw();

Transactions

From RedBean 0.7.8 on you can use transactions:
To start a transaction:
$database->startTransaction();
To commit:
$database->commit();
And finally, to roll back a transaction:
$database->rollback();

Meta Information

OODBBeans contain meta information; for instance the type of the bean. This information is
hidden in a meta information field. You can use simple accessors to get and modify this
meta information.

Fetching Meta Data

To get a meta property value:
$value = $bean->getMeta("my.property", $defaultIfNotExists);
The default default value is NULL.



Changing or Adding Meta Data

To set a meta property simply use a dot separated notation; preceding nodes do not have to
exist; the system will create them automatically.
$bean->setMeta("type", "newtable"); //changes the table
To make Redbean add a unique index for several columns:
$bean->setMeta("buildcommand.unique.0", array( "column1", "column2",
"column3") );

RedShoe

RedShoe is a simple, tiny script for MySQL databases that updates existing databases to
facilitate new RedBean software. For instance, if you deploy a RedBean program and you
make some updates with RedBean this means you no longer have to compare the
databases; RedShoe will do this for you and update the target database. It will add new
columns (or widen existing ones), tables and indexes but it will not remove anything.

Download Redshoe

You can download RedShoe here.

Redshoe Usage

RedShoe is an easy to use commandline deployment tool for RedBean applications. But it
can also be used for other non-redbean databases as well. To update or deploy a RedBean
database on a remote server you need to register the database with RedShoe first.

Adding a database

To add a database for use with RedShoe issue the following command:
php redshoe.php add mysql localhost mydatabase root - db1
In this example, mydatabase is the name of the database to be added it will be assigned the
internal name db1 (because you can have multiple databases with the same databasename
on different hosts). The first argument is the database type to be used; only mysql is
supported right now. Then, the second argument is the host or IP on wich your database
resides, in our case this is localhost. Next comes the databasename followed by username
and password. If you provide a dash (-) for password, this means: no password. The final
argument is the internal redshoe name or label for this database.

Listing databases

To get an overview of the databases registered for use with redshoe invoke the following
command:
php redshoe.php list

http://redbeanphp.com/#/download


This command will list the databases currently registered; it will present you a list that looks
somewhat like this:
db1: (mysql) 'mydatabase' on: localhost

Deployment

To perform a deployment with RedShoe type the following:
php redshoe.php deploy db1 production1 production2
The first database label indicates the source, the other database labels refer to the targets.
This command will actually do nothing at all. It will just register that you want to deploy the
contents of db1 to production1 and production2, that's all. You can list as many database
targets as you want but only one source. The source database is always the first argument.

Exporting

To get the queries that are needed to update the production databases use:
php redshoe.php export
This will generate a file called import.sql for each production server in the destination list.
Each file contains the required SQL to update that specific database to be compliant with the
source database.

Distributing databases directly

*Warning this feature should be used carefully and is not expected to work fully until
version RedShoe 0.7* - This causes the deployment to be send to the target databases
directly instead of saving it to SQL files. Syntax:
php redshoe.php distrib


	RedBean ORM for PHP
	The Idea
	Getting Started

	Beans
	Rules for properties
	Store a Bean in the database
	Loading a Bean
	Updating a Bean
	Deleting a Bean
	Importing and Exporting

	Associations
	Creating the Association Manager
	Connecting two Beans
	Getting Related Beans
	Breaking the connection between Beans
	1 to N relations
	Trees

	Toolbox
	The Adapter
	The Query Writer
	RedBean OODB

	Finding Beans
	Selecting Beans from the database

	RedBean Observers
	Queries
	Transactions
	Meta Information
	Fetching Meta Data
	Changing or Adding Meta Data

	RedShoe
	Download Redshoe
	Redshoe Usage
	Adding a database
	Listing databases
	Deployment
	Exporting
	Distributing databases directly


